Friday, 22 February 2013

Fighter Jet Pilot


Fighter Jet Pilot Biography
The U.S. Air Force initially ordered 15 "Full-Scale Development" (FSD) aircraft (11 single-seat and four two-seat models) for its flight test program, but this was reduced to eight (six F-16A single-seaters and two F-16B two-seaters).[30] The YF-16 design was altered for the production F-16. The fuselage was lengthened by 10.6 in (0.269 m), a larger nose radome was fitted for the AN/APG-66 radar, wing area was increased from 280 sq ft (26 m2) to 300 sq ft (28 m2), the tailfin height was decreased, the ventral fins were enlarged, two more stores stations were added, and a single door replaced the original nosewheel double doors. The F-16's weight was increased by 25% over the YF-16 by these modifications.[31][32]
The FSD F-16s were manufactured at General Dynamics' Fort Worth, Texas plant in late 1975; the first F-16A rolled out on 20 October 1976 and first flew on 8 December. The initial two-seat model achieved its first flight on 8 August 1977. The initial production-standard F-16A flew for the first time on 7 August 1978 and its delivery was accepted by the USAF on 6 January 1979. The F-16 was given its formal nickname of "Fighting Falcon" on 21 July 1980, entering USAF operational service with the 34th Tactical Fighter Squadron, 388th Tactical Fighter Wing at Hill AFB on 1 October 1980.[33]
On 7 June 1975, the four European partners, now known as the European Participation Group, signed up for 348 aircraft at the Paris Air Show. This was split among the European Participation Air Forces (EPAF) as 116 for Belgium, 58 for Denmark, 102 for the Netherlands, and 72 for Norway. There would be two European production lines, one in the Netherlands at Fokker's Schiphol-Oost facility and the other at SABCA's Gossellies plant in Belgium; production would be divided among them as 184 and 164 units, respectively. Norway's Kongsberg Vaapenfabrikk and Denmark's Terma A/S also manufactured parts and subassemblies for EPAF aircraft. European co-production was officially launched on 1 July 1977 at the Fokker factory. Beginning in November 1977, Fokker-produced components were sent to Fort Worth for fuselage assembly, which were in turn shipped back to Europe for final assembly of EPAF aircraft at the Belgian plant on 15 February 1978, with deliveries to the Belgian Air Force from January 1979. The Dutch line started up in April 1978 and delivered its first aircraft to the Royal Netherlands Air Force in June 1979. In 1980 the first aircraft were delivered to the Royal Norwegian Air Force by SABCA and to the Royal Danish Air Force by Fokker.[34][35]
During the late 1980s and 1990s, Turkish Aerospace Industries (TAI) produced 232 Block 30/40/50 F-16s on a production line in Ankara under license for the Turkish Air Force. TAI also produced 30 Block 50 from 2010, and built 46 Block 40s for Egypt in the mid-1990s. Korean Aerospace Industries opened a domestic production line for the KF-16 program, producing 140 Block 52s from the mid-1990s to mid-2000s (decade). If India had selected the F-16IN for its Medium Multi-Role Combat Aircraft procurement, a sixth F-16 production line would be built in India.[36]
[edit]Improvements and upgrades
One change made during production was augmented pitch control to avoid deep stall conditions at high angles of attack. The stall issue had been raised during development, but had originally been discounted in the early design stages. Model tests of the YF-16 conducted by the Langley Research Center revealed a potential problem, but no other laboratory was able to duplicate it. YF-16 flight tests were not sufficient to expose the issue; it required later flight testing on the FSD aircraft to demonstrate there was a real concern. In response, the areas of the horizontal stabilizer were increased 25% on the Block 15 aircraft in 1981 and retrofitted later on to earlier aircraft. In addition, a manual override switch to disable the horizontal stabilizer flight limiter was placed more prominently on the control console, allowing the pilot to regain control of the horizontal stabilizers (which the flight limiters otherwise lock in place) and recover. Besides a significant reduction in the risk of deep stalls, the larger horizontal tail also improved stability and permitted faster takeoff rotation.[37][38]
In the 1980s, the Multinational Staged Improvement Program (MSIP) was conducted to evolve new capabilities for the F-16, mitigate risks during technology development, and ensure the aircraft's worth. The program upgraded the F-16 in three stages. The MSIP process permitted the introduction of new capabilities quicker, at lower costs and with reduced risks, compared to traditional independent programs to upgrade and modernize aircraft.[39] Other upgrade programs, including service life extensions, have been conducted on the F-16.[40]
Due to the slow pace of F-35 development, the USAF will spend $2.8 billion to upgrade and retain 350 F-16s.[41] The more versatile multirole F-16s are being retained as the USAF reduces more focused platforms such as the A-10.[42]
While Lockheed has won most of the contracts to upgrade F-16s for different countries, BAE Systems, through its MTC Technologies subsidiary, gained the South Korean upgrade order in July 2012.[43] In the fall of 2012, the USAF assigned the total upgrade contract to Lockheed, bundling in the radar selection in order to have a more cohesive package
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot

Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot

Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot
Fighter Jet Pilot



No comments:

Post a Comment