Buy A Fighter Jet Biography
In part because of its advances in technology and a top speed greater than existing Navy aircraft, numerous technical problems had to be solved before the Corsair would enter service. Carrier suitability was a major development issue, prompting changes to the main landing gear, tail wheel and tailhook. Early F4U-1s had difficulty recovering from developed spins, since the inverted gull wing's shape interfered with elevator authority. It was also found that the Corsair's starboard wing could stall and drop rapidly and without warning during slow carrier landings.[21] In addition, if the throttle were suddenly advanced (for example, during an aborted landing) the port wing could stall and drop so quickly that the fighter could flip over with the rapid increase in power.[22] These potentially lethal characteristics were later solved through the addition of a small, 6 in (150 mm)-long stall strip to the leading edge of the outer starboard wing, just inboard of the gun ports. This allowed the starboard wing to stall at the same time as the port.[23]
An early F4U-1 showing the "birdcage" canopy with rearwards production cockpit location. Compare with the XF4U-1.
Other problems were encountered during early carrier trials. The combination of an aft cockpit and the Corsair's long nose made landings hazardous for newly-trained pilots. During landing approaches it was found that oil from the hydraulic cowl flaps could spatter onto the windscreen, badly reducing visibility, and the undercarriage oleo struts had bad rebound characteristics on landing, allowing the aircraft to bounce out of control down the carrier deck.[23] The first problem was solved by locking the top cowl flap down permanently, then replacing it with a fixed panel. The undercarriage bounce took more time to solve but eventually a "bleed valve" incorporated in the legs allowed the hydraulic pressure to be released gradually as the aircraft landed. The Corsair was not considered fit for carrier use until the wing stall problems and the deck bounce could be solved. Meanwhile the more docile and simpler to build F6F Hellcat had begun entering service. Corsair deployment aboard U.S. carriers was delayed until late 1944Production F4U-1s featured several major modifications compared with the XF4U-1. A change of armament to six wing-mounted .50 in (12.7 mm) M2 Browning machine guns (three in each outer wing panel) and their ammunition (400 rpg for the inner pair, 375 rpg for the outer)[25] meant that the location of the wing fuel tanks had to be changed. In order to keep the fuel tank close to the center of gravity, the only available position was in the forward fuselage, ahead of the cockpit. Accordingly a 237 gal (897 l) self-sealing fuel tank replaced the fuselage mounted armament, the cockpit had to be moved back by 32 in (810 mm) and the fuselage lengthened.[17] In addition, 150 lb of armor plate was installed, along with an 1.5 in (38 mm) bullet-proof windscreen which was set internally, behind the curved Plexiglas windscreen. The canopy could be jettisoned in an emergency, and curved transparent panels, providing the pilot with a limited rear view over his shoulders, were inset into the fuselage, behind the pilot's headrest. A rectangular Plexiglas panel was inset into the lower center-section to allow the pilot to see directly beneath the aircraft and assist with deck landings.[N 2] The engine used was the more powerful R-2800-8 (B series) Double Wasp which produced 2,000 hp (1,491 kW). On the wings the flaps were changed to a NACA slotted type and the ailerons were increased in span to increase the roll rate, with a consequent reduction in flap span. IFF transponder equipment was fitted in the rear fuselage. All in all these changes increased the Corsair's weight by several hundred pounds.
In part because of its advances in technology and a top speed greater than existing Navy aircraft, numerous technical problems had to be solved before the Corsair would enter service. Carrier suitability was a major development issue, prompting changes to the main landing gear, tail wheel and tailhook. Early F4U-1s had difficulty recovering from developed spins, since the inverted gull wing's shape interfered with elevator authority. It was also found that the Corsair's starboard wing could stall and drop rapidly and without warning during slow carrier landings.[21] In addition, if the throttle were suddenly advanced (for example, during an aborted landing) the port wing could stall and drop so quickly that the fighter could flip over with the rapid increase in power.[22] These potentially lethal characteristics were later solved through the addition of a small, 6 in (150 mm)-long stall strip to the leading edge of the outer starboard wing, just inboard of the gun ports. This allowed the starboard wing to stall at the same time as the port.[23]
An early F4U-1 showing the "birdcage" canopy with rearwards production cockpit location. Compare with the XF4U-1.
Other problems were encountered during early carrier trials. The combination of an aft cockpit and the Corsair's long nose made landings hazardous for newly-trained pilots. During landing approaches it was found that oil from the hydraulic cowl flaps could spatter onto the windscreen, badly reducing visibility, and the undercarriage oleo struts had bad rebound characteristics on landing, allowing the aircraft to bounce out of control down the carrier deck.[23] The first problem was solved by locking the top cowl flap down permanently, then replacing it with a fixed panel. The undercarriage bounce took more time to solve but eventually a "bleed valve" incorporated in the legs allowed the hydraulic pressure to be released gradually as the aircraft landed. The Corsair was not considered fit for carrier use until the wing stall problems and the deck bounce could be solved. Meanwhile the more docile and simpler to build F6F Hellcat had begun entering service. Corsair deployment aboard U.S. carriers was delayed until late 1944Production F4U-1s featured several major modifications compared with the XF4U-1. A change of armament to six wing-mounted .50 in (12.7 mm) M2 Browning machine guns (three in each outer wing panel) and their ammunition (400 rpg for the inner pair, 375 rpg for the outer)[25] meant that the location of the wing fuel tanks had to be changed. In order to keep the fuel tank close to the center of gravity, the only available position was in the forward fuselage, ahead of the cockpit. Accordingly a 237 gal (897 l) self-sealing fuel tank replaced the fuselage mounted armament, the cockpit had to be moved back by 32 in (810 mm) and the fuselage lengthened.[17] In addition, 150 lb of armor plate was installed, along with an 1.5 in (38 mm) bullet-proof windscreen which was set internally, behind the curved Plexiglas windscreen. The canopy could be jettisoned in an emergency, and curved transparent panels, providing the pilot with a limited rear view over his shoulders, were inset into the fuselage, behind the pilot's headrest. A rectangular Plexiglas panel was inset into the lower center-section to allow the pilot to see directly beneath the aircraft and assist with deck landings.[N 2] The engine used was the more powerful R-2800-8 (B series) Double Wasp which produced 2,000 hp (1,491 kW). On the wings the flaps were changed to a NACA slotted type and the ailerons were increased in span to increase the roll rate, with a consequent reduction in flap span. IFF transponder equipment was fitted in the rear fuselage. All in all these changes increased the Corsair's weight by several hundred pounds.
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
Buy A Fighter Jet
No comments:
Post a Comment